Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.
نویسندگان
چکیده
UNLABELLED Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase-9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. SIGNIFICANCE Fragile X Syndrome (FXS) is the leading known genetic cause of autism spectrum disorders. Individuals with FXS show symptoms of auditory hypersensitivity. These symptoms may arise due to sustained neural responses to repeated sounds, but the underlying mechanisms remain unclear. For the first time, this study shows deficits in habituation of neural responses to repeated sounds in the Fmr1 KO mice as seen in humans with FXS. We also report an abnormally high level of matrix metalloprotease-9 (MMP-9) in the auditory cortex of Fmr1 KO mice and that deletion of Mmp-9 from Fmr1 KO mice reverses habituation deficits. These data provide a translation relevant electrophysiological biomarker for sensory deficits in FXS and implicate MMP-9 as a target for drug discovery.
منابع مشابه
Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model.
Fmr1 knock-out (ko) mice display key features of fragile X syndrome (FXS), including delayed dendritic spine maturation and FXS-associated behaviors, such as poor socialization, obsessive-compulsive behavior, and hyperactivity. Here we provide conclusive evidence that matrix metalloproteinase-9 (MMP-9) is necessary to the development of FXS-associated defects in Fmr1 ko mice. Genetic disruption...
متن کاملThe Fragile X mental retardation protein regulates matrix metalloproteinase 9 mRNA at synapses.
Activity-dependent protein synthesis at synapses is dysregulated in the Fragile X syndrome (FXS). This process contributes to dendritic spine dysmorphogenesis and synaptic dysfunction in FXS. Matrix Metalloproteinase 9 (MMP-9) is an enzyme involved in activity-dependent reorganization of dendritic spine architecture and was shown to regulate spine morphology in a mouse model of FXS, the Fmr1 kn...
متن کاملNeural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase
Fragile X syndrome (FXS), caused by loss of the fragile X mental retardation 1 (FMR1) product (FMRP), is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracyc...
متن کاملگزارش یک مورد سندرم ایکس شکننده همراه با ناهنجاری انگشتان
Fragile X Syndrome, the most common cause of inherited mental retardation, results from mutation in fragile X mental retardation gene (FMR1) on long arm of X chromosome, Xq27.3. Clinical features include moderate to severe mental retardation without neurologic deficit, long face, large ears, prominent jaw, macro-orchidism, attention deficit, behavior di...
متن کاملGABA-B Agonist Baclofen Normalizes Auditory-Evoked Neural Oscillations and Behavioral Deficits in the Fmr1 Knockout Mouse Model of Fragile X Syndrome
Fragile X syndrome is a genetic condition resulting from FMR1 gene mutation that leads to intellectual disability, autism-like symptoms, and sensory hypersensitivity. Arbaclofen, a GABA-B agonist, has shown efficacy in some individuals with FXS but has become unavailable after unsuccessful clinical trials, prompting interest in publicly available, racemic baclofen. The present study investigate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of disease
دوره 89 شماره
صفحات -
تاریخ انتشار 2016